
Inverse Kinematics Assistance for the Creation of
Redirected Walking Paths

Jerald Thomas*

Virginia Tech
Seraphina Yong†

University of Minnesota
Evan Suma Rosenberg‡

University of Minnesota

ABSTRACT

Virtual reality interactions that require a specific relationship be-
tween the virtual and physical coordinate systems, such as passive
haptic interactions, are not possible with locomotion techniques
using redirected walking. To address this limitation, recent research
has introduced environmental alignment, which is the notion of us-
ing redirected walking techniques to align the virtual and physical
coordinate systems such that these interactions are possible. How-
ever, the previous research has only implemented environmental
alignment in a reactive manner, and the authors posited that better
results could be achieved if a predictive algorithm was instead used.
In this work, we introduce a novel way to model the environmental
alignment problem as a version of the inverse kinematics problem
which can be incorporated into several existing predictive algorithms,
as well as a simple proof-of-concept implementation. An exploratory
human subject study (N=17) was conducted to evaluate this imple-
mentation’s usability as a tool for authoring planned path redirected
walking scenarios that incorporate physical interactivity. To our
knowledge, this is the first study to evaluate redirected walking ex-
perience design tools and provides a possible framework for future
studies. Our qualitative analysis of the results generated both guid-
ance for integrating automatic solvers and broad recommendations
for designing redirected path authoring tools.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Com-
puting methodologies—Computer graphics—Graphics systems and
interfaces—Virtual reality;

1 INTRODUCTION

The various methods that allow virtual reality (VR) users to move
throughout a virtual environment are considered locomotion tech-
niques. Due to advances in display and tracking technology, large-
scale VR experiences are becoming more readily available for av-
erage consumers, and the larger scale of these experiences allows
developers to better leverage natural locomotion. Natural locomo-
tion, where the user physically walks and rotates to translate and
rotate their virtual representation, has been shown to have several
benefits over other locomotion methods, including increased spatial
awareness [37] and sense of presence [43]. However, a notable limi-
tation of natural locomotion is that physical obstacles and the extent
of the tracking system constrain the user’s movement. Typically,
the size of the available physical environment is smaller than the
virtual environment the user is experiencing, requiring techniques
that augment natural locomotion. Redirected walking (RDW) is a
common technique that augments natural locomotion to effectively
increase the size of the physical walking space [35].

When RDW is applied, the mapping between the user’s virtual
and physical coordinate systems no longer remains static as it does

*e-mail: jeraldlt@vt.edu
†e-mail: yong0021@umn.edu
‡e-mail: suma@umn.edu

with traditional natural locomotion [41], which in turn makes it
difficult for VR developers to integrate physical interactions into
environments that use RDW. This limits the amount of immersion
these environments can provide because interactivity with the phys-
ical environment, particularly passive haptic feedback, has been
shown to significantly enhance the user’s experience [21, 23]. The
combination of RDW and physical interaction, therefore, represents
a particularly compelling opportunity to create immersive virtual
reality experiences that transcend the limitations of either the purely
virtual or completely real world. Accomplishing this is the main
goal of environmental alignment, a concept introduced by Thomas
et al. in 2020 [41]. Environmental alignment uses RDW techniques
to align the user’s virtual and physical coordinate systems, thereby
enabling interactivity with the physical environment. However, the
prior work only evaluated environmental alignment using reactive
RDW algorithms that do not predict where the user will move, and
as such, provided sub-optimal results.

Despite nearly two decades of research, redirected walking tech-
niques have had only a modest real world impact, and the complexity
of integrating RDW in virtual reality applications remains a major
practical barrier for developers. Although some open-source imple-
mentations of RDW algorithms have been developed, such as the
Redirected Walking Toolkit [4] and the OpenRDW platform [26],
there has been a notable lack of attention on authoring tools for
RDW experiences. The addition of physical interaction further in-
creases the complexity of the design space, and to our knowledge no
prior work has ever developed practical solutions for authoring VR
experiences that integrate redirected walking with passive haptics.

In this paper, we address the gap in the literature by presenting
a proof-of-concept inverse kinematics based algorithm that assists
developers by calculating the RDW trajectories required to achieve
alignment between the physical and virtual environments, advancing
the state-of-the-art by incorporating movement prediction into envi-
ronmental alignment. We also present an exploratory user study that
compares this semi-automated approach with manual configuration
of RDW parameters. This user study is the first to formally evaluate
RDW authoring tools, and serves as an example for similar future
research.

2 BACKGROUND AND RELATED WORKS

2.1 Redirected Walking
RDW is a method of VR locomotion that allows the user to use nat-
ural locomotion to control their representation in the virtual world.
First introduced by Sharif Razzaque, RDW uses subtle perceptual
illusions to effectively increase the size of the tracked physical en-
vironment [36]. These perceptual illusions, known as self-motion
gains, introduce discrepancies between the user’s physical and per-
ceived virtual movements. If applied correctly, the discrepancies
can go unnoticed by the user because the visual system tends to
dominate when different stimuli are presented to the visual and
vestibular systems. However, this dominance is only reliable to a
certain degree. The value at which a particular self-motion gain will
begin to be noticeable by the average user is its detection thresh-
old. Several human-subject studies have empirically determined
the detection thresholds for each of the major self-motion gains,
and these values are used in the majority of RDW literature [38].

593

2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)

978-1-6654-5325-7/22/$31.00 ©2022 IEEE
DOI 10.1109/ISMAR55827.2022.00076

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ix
ed

 a
nd

 A
ug

m
en

te
d

R
ea

lit
y

(I
SM

A
R

) |
 9

78
-1

-6
65

4-
53

25
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
M

A
R

55
82

7.
20

22
.0

00
76

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

However, more recent research suggests that the detection thresholds
can have numerous factors, including biological sex, HMD field of
view, cognitive load, and other individual differences [22, 31, 32, 47].
The majority of these works evaluate the user’s detection threshold
for a specific self-motion gain in isolation, but it is possible to com-
bine self-motion gains and doing so has been shown to change their
individual perception thresholds [17, 30].

There are situations where the magnitude of the gains required
to prevent a user from colliding with a boundary exceeds the detec-
tion thresholds. At this point, the system can employ one of two
methods. The first, and more traditional method, is a reorientation
event. The most common form of reorientation events are called
resets [44]. Resets work by pausing the VR experience prior to the
user exiting the physical boundaries. Once paused, the experience
instructs the user to physically turn to face an advantageous posi-
tion. In most literature, this advantageous position is the center of
the physical environment, though some research has explored other
“reset strategies” [42]. The experience then continues when the reset
concludes. Resets, as described, have a very negative impact on
the user’s experience, and considerable effort is put in mitigating
their use. However, prior work has shown that it is possible to in-
corporate resets into the experience narrative, allowing for resets
without the need to pause the experience [16, 34]. For the second
method, the RDW gains are temporarily set to values that exceed the
detection threshold limits [9]. This allows the system to use stronger,
but noticeable, RDW gains to prevent the user from colliding with
a boundary. This method is relatively new, and there is no good
empirical understanding of its effects on the user. Both methods
have their pros and cons, and it is up to the experience designer to
determine which is more appropriate for their application.

A publication providing a more in-depth overview of the first
15 years of RDW research was published in 2018 by Nilsson et
al. [33]. Recently, most research has focused on developing more
effective RDW algorithms. RDW algorithms are the mechanisms
that decide how much of which gain to apply at when. Generally
speaking, there are two main categories of RDW algorithms: reactive
and predictive. Reactive algorithms do not know where the user
intends to move in the virtual environment and must make decisions
based on immediately available information. As a result, reactive
algorithms are very generalizable in use but often only provide very
localized optimizations. On the other hand, predictive algorithms
have at least some knowledge of the user’s intended path and can
create a more optimized solution. However, predictive algorithms
are less generalizable due to unreliable prediction in more open
virtual environments.

Redirected Walking Algorithms

The first introduced RDW algorithms, Steer to Center (S2C) and
Steer to Orbit (S2O), are both reactive algorithms [36]. Until
recently, S2C was considered the best performing reactive algo-
rithm [5, 20]. However, two new classes of reactive algorithms
have emerged in recent years that generally perform equal to, or
better than, the traditional reactive methods. The first uses artifi-
cial potential functions (APF-RDW) to calculate a better heuristic
for determining per-frame gain values [9, 28, 42]. The second uses
machine learning to optimize gain selection for a specific physical
environment [11, 14, 25, 40].

Predictive algorithms consist of two sub-categories: dynamic
and static [3]. Dynamic predictive algorithms, such as FORCE and
MPCRed are constantly updating a prediction model based on the
layout of the virtual environment, and the user’s position within
it [29, 52]. In most cases, if the algorithm can produce a reliable,
accurate prediction model, it will perform better than a reactive
algorithm. Static predictive algorithms, such as COPPER, work on
the assumption that the user’s entire virtual path is known ahead of
time and that the user will not deviate from that path [3].

2.2 Interactions with the Physical Environment
Interactions with the physical environment have long been studied
to enhance VR experiences, and a key way that they do so is by
increasing the user’s sense of presence [13]. A particularly useful
technique is passive haptic feedback, where a physical proxy object
is mapped to and used as a counterpart for a virtual object [27].
When implemented in a convincing way, passive haptic feedback
can improve the user’s sense of presence even more than other
physical interaction techniques [21, 23].

Azmandian et al. showed that it is possible to subtly redirect
a user’s reaching motion in order to have the user interact with
multiple virtual objects while interacting with only one physical
object, which the authors termed “retargeting” [6]. Zenner et al.
continued this work by determining the perception thresholds of the
applied manipulations [51]. Where Azmandian et al. used consistent
movement manipulations to retarget multiple virtual objects onto
one physical object, Wilson et al. employed a change blindness
illusion to achieve a similar effect [48].

Environmental Alignment
RDW works by adding discrepancies between the user’s virtual and
physical paths. A negative side-effect of the added discrepancies
is a misalignment of the virtual and physical coordinate systems.
With few exceptions, experiences that incorporate RDW cannot also
incorporate interactions that require aligned virtual and physical
coordinate systems such as passive haptic feedback. Steinicke et al.
and Kohli et al. have explored solutions to this problem, but both
required manual selection of the RDW gains to work [24, 39].

In an attempt to solve this problem in a more generalizable
manner, Thomas et al. introduced the idea of environmental align-
ment [41]. Environmental alignment uses RDW gains to keep users
from colliding with boundaries and obstacles, as with traditional
RDW algorithms, and to steer users towards physical-virtual posi-
tion pairs that result in an aligned physical and virtual coordinate
system. The implementation was accomplished using an APF-RDW
reactive algorithm, and while the results were promising, they were
not always able to accomplish alignment. Williams et al. has also
used the concept of alignment to introduce a new RDW algorithm,
ARC [45]. Williams et al. further improved upon this method
by incorporating the concept of visibility polygons in their algo-
rithm [46]. Researchers have also implemented reactive alignment
using machine learning techniques [12].

Recent work presented by Xu et al. discretizes the physical
environment and attempts to find optimal paths for every pair of
physical locations [50]. While this work was not proposed as a
way to implement alignment, we believe that it could be used to
implement reactive alignment with minimal effort.

Though reactive alignment is an area of active development and
research, there is no work on implementing alignment in a predictive
manner. In this paper, we extend the work performed by Thomas et
al. by introducing a method to accomplish predictive environmental
alignment.

3 METHOD

In this section we, describe how predictive RDW can be cast as an
inverse kinematics problem. Several objects in the physical world
can be modeled mechanically as a kinematic chain, a series of rigid
bodies connected by joints. To calculate the position of a joint in the
chain, we must know the length of the prior rigid body, the angle
of the prior joint, and the position of the prior joint. Thus, if the
position of the first joint (termed the “root”), the length of each
rigid body, and the angle of each joint are known, it is possible to
describe the entire chain completely. This process of calculating the
position of joint i by first calculating the position of joint i− 1 is
called forward kinematics (FK). Often the goal of FK is to determine
the position of the final joint in the chain (termed the “end effector”).

594

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

In many cases, it is desirable to have the end effector be in a
specific position. Typically the positions of the other joints are not
as important as long as all constraints are met (most real-world joints
have a limit to their rotation, for example). The problem of finding a
satisfying set of joint positions resulting in the end effector being in
the desired position is called inverse kinematics (IK).

Predictive RDW algorithms work by calculating the optimal gain
values for each segment of a predicted virtual path. For this paper,
we define a path as a series of waypoints connected by a series of
segments. We also assume that a user will repeatedly stand at vir-
tual waypoint i−1, rotate to face virtual waypoint i, and then walk
from virtual waypoint i−1 to virtual waypoint i. This is repeated
until the user reaches the final waypoint. Given the virtual path, the
user’s starting physical location and rotation, and a set of gains, it is
possible to calculate the resulting physical path, assuming that the
user follows the virtual path as expected. This process reduces to
an FK problem where the position of physical waypoint i−1, the
rotation at virtual waypoint i−1 multiplied by the corresponding ro-
tation gain, and the length of the segment between virtual waypoints
i−1 and i multiplied by the corresponding translation gain together
determine the position of physical waypoint i. Equation 1 shows the
FK equation for a traditional 2D kinematic chain where P ∈ R2 is
the position of a joint, L ∈ R is the length of a rigid body, and θ ∈ R
is the rotation of a joint in the local coordinate system of Pi−1.

Pi = Pi−1 +(Li−1 cos(θi−1), Li−1 sin(θi−1)) (1)

Similarly, Equation 2 shows the FK equation for a pre-determined
RDW path where PP ∈ R2 is the position of a physical waypoint,
PV ∈ R2 is the position of a virtual waypoint, T ∈ R is the amount
of translation for a given segment (the length of the corresponding
virtual path segment (||PV

i − PV
i−1||) multiplied by its translation

gain (gR
i−1)), and R ∈ R is the rotation of the corresponding virtual

waypoint in the local coordinate system of PV
i−1 (θi−1) multiplied by

its rotation gain (gR
i−1).

PP
i = PP

i−1 +(Ti−1 cos(Ri−1), Ti−1 sin(Ri−1)) (2)

We observe that rotation gains are equivalent to scaling the angle
between two joints, and translation gains are equivalent to scaling the
distance. In the robotics literature, the equivalent joints are known
as 2D revolute and 2D prismatic joints, respectively.

Just as it is possible to determine the final position of a user’s
physical path by using FK, we propose that IK can calculate
the gain values for a given virtual path resulting in the user’s
physical path ending at a specific physical position. This effec-
tively solves the environmental alignment problem for planned-path
predictive algorithms, and for this reason, we refer to this strategy
as Environmental Alignment Inverse Kinematics (EA-IK).

3.1 Implementation
Our current implementation of EA-IK uses Cyclic Coordinate De-
scent (CCD) [49] as the IK solver algorithm. However, several
decades of research have explored IK and IK solvers, and many
more effective and efficient algorithms exist. We chose CCD in
order to provide a proof-of-concept as it is simple to conceptually
grasp and implement.

The difference between the classical IK problem and the EA-IK
problem is the use of resets. Continuing the IK analogy, resets would
be akin to dynamically adding joints to segments of the kinematic
chain. To the best of our knowledge, no existing IK algorithms
consider this ability as it breaks the assumptions of a classical kine-
matic chain. Our implementation takes a basic approach to solve this
problem, though we propose a more advanced solution in Section 6.

The user’s starting position and rotation within the physical envi-
ronment will be the root (R), and after traversing the path, the user’s

position in the physical environment will be the end effector (E).
The goal of the system is to get E to a target location (T) Every
virtual waypoint between R and E represents a joint that can ro-
tate between the smallest possible rotation (the waypoints’s rotation
times the minimum rotation gain) and the largest possible rotation
(the waypoints’s rotation times the maximum rotation gain). Simi-
larly, every virtual path segment represents a rigid body which can
vary in length between the smallest possible length (the virtual path
segment length times the minimum translation gain) and the largest
possible length (the virtual path segment length times the maximum
translation gain).

The CCD algorithm works on a parameter space, an n-
dimensional space where each dimension represents one parameter
that the algorithm can manipulate. In traditional IK scenarios, this
parameter space typically consists of a dimension for each degree
of freedom of each joint in the kinematic chain. The EA-IK CCD
parameter space consists of a translation gain dimension for each
path segment and a rotation gain dimension for each waypoint.

A pass of the EA-IK CCD algorithm iterates over its parameter
space. Each iteration sets the current gain value to its minimum and
then increases it in steps. We found a step size of 0.001 worked
well in our case. After each gain increase, the physical path and the
corresponding error (the euclidean distance from E to the target T)
is calculated. This process continues until either the gain reaches its
maximum value or the calculated error reaches a minimum value.

To find an optimal solution, EA-IK CCD performs multiple passes
until the final error reaches a minimum value. Once the algorithm
determines a solution, it simulates a traversal of the resulting physi-
cal path starting at R. If it detects an intersection with the physical
boundaries, it creates a reset. To create the reset, the physical path
up to the intersection point is “locked in”, and R is positioned at
the intersection point and oriented to face the center of the physical
environment. Then the whole EA-IK CCD algorithm is executed
again, solving for the portion of the virtual path remaining after the
reset and the new physical root R. This repeats until the entire path
lies within the physical boundaries. A pseudo-code description of
this algorithm can be found in Appendix B in the supplementary
materials.

4 EXPERIMENT

The primary purpose of this experiment was to determine if using
IK gain selection for planned path RDW led to a better designer
experience. We presented participants with two gain selection modes:
manual and automatic. Manual mode provided an interface where
users had to select each segment’s rotation and translation gain value
manually. Automatic mode used the EA-IK algorithm described in
Section 3.1 to select the gains automatically. The entire experiment
was completed in the Unity3D Editor, and custom interfaces were
developed for each mode.

For this experiment, we had three hypotheses:
H1: Automatic mode will result in faster task completion

times. As there are fewer parameters for the user to change, we
believe that the task will take less time when automatic mode is
used.

H2: Manual mode will have fewer resets. The implemented
version of EA-IK does not optimize for resets. We hypothesize
that in manual mode, users will be able to tune parameters as they
accomplish the task to reduce the number of resets.

H3: Automatic mode would be overall more usable. As there
are fewer parameters for the user to keep track of, we believe that
the automatic mode will produce a smoother and more usable expe-
rience.

4.1 Design
A two-by-three within-subjects study was designed and implemented.
The two independent variables were the gain selection mode and

595

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Three different feasible physical paths (b, c, and d) for the same virtual path (a). Images are captured as a user was moving the physical
path starting location. During this time our algorithm automatically calculated the gains necessary for the end of the physical path to be positioned
at a pre-determined target position (the yellow X). The calculated gain values were added to the images in post-production, are colored to match
their corresponding physical path segment. Here gR refers to rotation gain and gT refers to translation gain.

the path difficulty. The gain selection mode was either manual or
automatic as described above, and the path difficulties were either
easy, medium, or hard. The number of path waypoints determined
a path’s difficulty; easy paths had four waypoints, medium paths
had six waypoints, and hard paths had eight waypoints. Each set
of conditions was presented once, for a total of six trials. The
presentation order of experimental conditions was counter-balanced.
There were two different paths for each difficulty to reduce the
chance of a learning effect. The first path was randomly generated
such that:

1. the total path length was equal to five meters multiplied by the
number of path segments

2. each path segment length was a minimum of three meters

3. the total amount of absolute rotation was equal to the number
of waypoints - 2 (there was no rotation at the first and last

waypoints) multiplied by 3π
8

4. the minimum absolute rotation at any of the waypoints with
rotation was π

8

These values were chosen after pilot testing to provide a path that
is similar to generated virtual paths in the RDW literature while
allowing control of the difficulty with a single variable. The second
path was a copy of the first, but mirrored about the Z-axis. This
promoted equal difficulty across the two modes and mitigated the
impacts of any learning effects.

4.2 Interface
We developed the experiment interface for Unity3D LTS version
2020.3.18f1. An “Experiment” menu added to the menu bar pro-
vided the functionality for the participant to start new trials when
instructed by the experimenter. When a trial was started, a new scene
was programmatically generated, consisting of two game objects;
one representing the physical environment and one representing the
virtual path. The physical environment game object had a child
object representing the user’s physical starting location and rotation.
Unity3D “Gizmos” were used to draw the virtual path, the calculated
physical path, the physical environment boundaries, and the physical
target location.

One of two versions of a C# script was added as a component
to the virtual path game object, depending on the gain selection
mode (Figure 2 shows the Manual mode component). This script
provided helpful information, such as distance to target and gain

Figure 2: A screen-capture of the Unity3D C# component interface
that controlled the RDW calculations. The interface for manual mode
allowed for participants to select gain values for each segment using
the sliders. The interface for automatic mode still had the sliders,
but they were deactivated so that the participants could not manually
change the gain value.

values, and allowed manipulation of the gains when in manual mode.
It also provided the ability to temporarily allow the path to exit the
bounds of the physical environment. This option helped to see how
the gains affected the path without resets, but the task could not
be completed if this option was activated. Figure 1 shows how by
simply moving the physical path’s starting location the automatic
mode functionality would update the gain values.

4.3 Participants

17 participants (15 Male, 2 Female) between the ages of 22 and 50
(Mean=30.71, SD=9.18) volunteered for participation. Participants

596

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

were recruited via postings to online communities such as Reddit
and the 3DUI mailing list as well as emails sent to colleagues of the
authors. As the experiment was conducted during the COVID-19
pandemic, participants took part in the study remotely via Zoom. 15
participants had no prior experience with RDW, 1 participant had
some prior experience with RDW, and 1 participant had moderate
prior experience with RDW. All participants were provided with
a $20 Amazon.com gift card. Our inclusion criteria, which all
participants met, were that they are 18 years or older, able to converse
in both written and spoken English, and had one more more years
of experience creating VR applications using the Unity3D game
engine.

4.4 Procedure and Metrics

At the start of the experiment session, the experimenter received
oral confirmation that the participant met all of the inclusion criteria,
reviewed the IRB-approved information sheet with the participant,
and then received permission to record the session. The experimenter
would then briefly introduce RDW, present the problem and task, and
show the participant how to use the interface. Once the experimenter
finished, they instructed the participant to complete four practice
trials using the interface to solve two paths of trivial difficulty using
manual and automatic modes. Participants were then allowed to
repeat the practice trials until they felt sufficiently familiar with the
interface, at which point they would begin the experimental trials.

For each trial, participants were provided with one of the im-
mutable virtual paths generated (as described in 4.1). A simple
representation of a physical environment with 10 meter by 10 meter
boundaries was displayed, which contained the representation of
the physical path. A game object that represented the user’s start-
ing physical location and rotation determined the physical path’s
position and orientation within the physical environment. The partic-
ipant was allowed to rotate this game object and move it anywhere
within the bounds of the represented physical environment. Doing
so would automatically update the physical path. When calculating
the physical path, resets were automatically accounted for so that
after a reset, the physical path was pointing towards the center of the
represented physical environment.

Participants were instructed that their primary goal for each trial
was to find a combination of starting location, starting rotation, and
RDW gains that resulted in a physical path with a final waypoint
within 0.25 meters of the target. Their secondary goal was to try to
reduce the number of resets. Participants were allowed to finish the
task if the final waypoint of the physical path was within 0.25 meters
of the target, regardless of the number of resets. However, they could
choose to continue the task in order to achieve fewer resets. If a
participant did not complete the task with 10 minutes, they were
allowed to get the endpoint as close to the target as possible and
finish the task.

In automatic mode, manipulating the user’s starting location and
rotation was the only manipulation the participant could make to
complete the task. Every participant’s change would trigger the
EA-IK algorithm to execute and find a set of gains. In manual mode,
the participant also had to set both the rotation and translation gains
for each segment of the paths manually.

The experimental trials were broken down by mode into two
blocks. The tasks to be completed in each block consisted of one
easy path, one medium path, and one hard path, in that order. After
each block, the experimenter instructed participants to fill out a
questionnaire about the gain selection mode they had just used.
These questionnaires consisted of the NASA Task Load Index (TLX)
questionnaire [18], the System Usability Scale (SUS) questionnaire
[10], and a prompt for the participant to detail any strategy they may
have used during that block.

Once the participant finished both blocks and the subsequent ques-
tionnaires, the experimenter asked a series of nine semi-structured

interview questions designed to elicit the user’s thoughts on the indi-
vidual components of the interface, as well as garner information on
how it could be improved. The full list of questions can be found in
Appendix A in the supplementary materials.

This experiment collected a series of both quantitative and qual-
itative metrics. Our quantitative metrics were the time it took to
complete the task, the number of resets in the calculated physical
path, the SUS questionnaire, and the NASA TLX questionnaire. Im-
portantly, participants were not explicitly instructed to perform each
trial as quickly as possible. Our qualitative metrics included ques-
tionnaire prompts to describe any strategy used for a given mode,
sentiments and ideas from the think-aloud portion of the tasks, and
sentiments and ideas from the semi-structured interview conducted
at the end of the.

5 RESULTS

5.1 Quantitative Results

Mode Difficulty
Times (sec.) Resets

Mean SD Med. IQR

Automatic
Easy 51.13 39.96 0 0
Medium 162.38 131.04 2 2
Hard 315.57 139.95 3 0

Manual
Easy 154.50 107.79 0 0.25
Medium 135.06 75.75 2 2
Hard 241.56 109.74 3 1

Table 1: Table of descriptive statistics for the time to task completion
and resets encountered quantitative metrics.

Descriptive statistics for all quantitative data are shown in Table 1.
For data that were not normally distributed, non-parametric analyses
were conducted and the results were reported using median and
interquartile range. Statistical tests assumed a significance value
of a = .05. Two participants were not able to complete the task
for the Automatic-Hard condition, and one participant was not able
to complete the task for the Automatic-Easy condition. All three
instances were because the participants were not able to complete
the task in the 10 minutes allotted. The corresponding data was left
out of the quantitative analysis.

Completion Times. The completion time data were ana-
lyzed using a 3x2 repeated-measures ANOVA (difficulty x mode).
Mauchly’s test of sphericity indicated a possible violation, and so a
Greenhouse-Geisser correction was applied. The results revealed a
significant interaction, F(1.78) = 12.54, p < .001,η2 = .09, and a

significant main effect for difficulty, F(1.83) = 22.70, p < .01,η2 =
.44. The main effect for mode was not significant, p = .41. Post-hoc
analysis was conducted using paired-sample t-tests with a Bonfer-
roni correction for multiple comparisons. For the easy difficulty,
participants completed the task faster using the automatic mode,
p < .001. The completion times were not significantly different for
the medium difficulty, p > .99. However, the trend was reversed for
hard difficulty, with faster times in the manual mode, p = .02. These
results only partially support H1.

Resets. Wilcoxon signed rank tests were conducted to com-
pare modes for each difficulty level. For the easy difficulty, it was
not possible to statistically analyze the data because all participants
were able to completely avoid resets using the automatic mode.
This resulted in a variance of 0, which causes the Z value if the
test to be undefined. However, it should be noted that some par-
ticipants still did encounter resets in easy trials using the manual
mode. For the medium difficulty, the analysis was not significant,
p = .68. However, the results were significant for the hard difficulty,
Z = 28.00, p = .02. Although the medians for both modes in this

597

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Box plots showing statistics for the time to task completion (left) and the resets encountered (right). The box extents represent IQR, the
black line within a box is the median, the dashed white line within a box is the mean, and the whiskers represent total spread of the data.

difficulty were the same (3), the box plots show that some partici-
pants were able to achieve fewer resets using the manual mode (see
Figure 3). Again, this only partially supports H2.

Usability and Workload. The overall SUS scores for each
of the two modes were analyzed using a paired-samples t-test.
The results were found no significant difference between the au-
tomatic mode (M = 56.62, SD = 15.61) and the manual mode
(M = 68.68, SD = 18.48), p = .08. The six subscales of the NASA
TLX were each analyzed using a Wilcoxon signed rank test. The
manual mode (Mdn = 5, IQR = 6) was associated with less frus-
tration as compared to the automatic mode (Mdn = 12, IQR = 6),
Z = 101.50, p = .02. Manual mode (Mdn = 5, IQR = 5) was also
associated with better performance as compared to the automatic
mode (Mdn = 5, IQR = 6), Z = 107.00, p = .05. The following
results were not significant: mental demand (Automatic Mdn = 14,
IQR = 8; Manual Mdn = 14, IQR = 7), p = .68, physical demand
(Automatic Mdn= 4, IQR= 3; Manual Mdn= 4, IQR= 6), p= .09,
temporal demand (Automatic Mdn = 5, IQR = 3; Manual Mdn = 5,
IQR = 6), p = .33, and effort (Automatic Mdn = 13, IQR = 10;
Manual Mdn = 13, IQR = 10), p = .67. As the SUS scores were
not found to be significantly different, we can neither accept nor
reject H3.

5.2 Qualitative Results and Discussion
We performed qualitative analysis on the think-aloud and interview
portions of the study. In this section, we discuss trends in partici-
pants’ thoughts on the manual and automatic path selection inter-
faces, and detail design implications distilled from this analysis.

5.2.1 Giving Users Communication and Control
The presence or lack of control was an overarching theme in partici-
pants’ responses, with almost all participants unanimously stating
they felt they had more “control” in the manual mode, compared to
the automatic mode. This is also reflected in the NASA TLX scores
above, which showed less frustration and better performance than
the automatic mode. The system behavior and communication style
contributed to this perception. The great majority of participants ex-
pressed that the automatic solver made them feel lack of control, be-
cause the system “would change things when I already had a plan on
what to do next”(P4), “did too many steps for me”(P8), and “messed
up how I created the path.” (P5). The automatic solver also did not
communicate how or why it was making these changes. Participants
perceived the automatic solver’s behavior as “random,”(P10, P8,
P5), “chaotic,”(P13), or “unpredictable”(P10, P14). This made
them frustrated and dissatisfied with the task. Inability to understand

how the system worked also made the participants unable to suggest
improvements for the automatic solver.

The sentiments expressed here resonate with recent calls to im-
prove explainability in automated interfaces [1]. Especially in con-
texts where users must respond to the system’s behavior or collabo-
rate with it, transparently communicating to users why the system
is making a decision is critical. We saw above that participants felt
negatively toward the system’s obscure behavior. Their frustration
about the lack of control also indicated desire for a more balanced
power relationship with the system. Users who are expected to take
responsibility for and do meaningful work in response to a system’s
behaviors have the right to know the reasons behind them. Knowing
this lets users trust the system and also improves productivity [15].
Based on this understanding, we recommend that automated system
elements must communicate the basis for all decisions (in this case,
automated gain and path changes) and allow users control over the
automation. For example, the automatic solver could visualize dif-
ferent path recommendations instead of directly changing the path,
or only be activated at discretion of the user.

The minority of participants that demonstrated less frustration
with the automatic solver shared the common approach of switching
to a “hands-off” mindset, and stopped trying to think or work towards
the goal. They described the automatic solver as “just letting the
algorithm do its thing,”(P12), “less thinking to do”(P1), and “much
faster, I found myself unconsciously ignoring all the variables.”(P15).
These participants gave up control of the system, which not everyone
was able to do: P4 realized that they felt as if they “[were] trying
to reach the goals too much” by having a plan while using the
automatic solver. Participants’ goals were also different – some
participants felt forced to do this, while others wanted to put less
effort into the tasks overall.

5.2.2 Flexibly Integrating Automation

Despite their frustrations with the automatic solver, almost all partic-
ipants described various contexts in which they would like to make
use of it. Their diverse preferences for integrating the automatic
interface varied along dimensions of task complexity (number and
length of path segments), task phase (beginning vs. end), and level
of control desired.

Some participants felt that the automatic solver worked better
sticking to easier tasks with less waypoints, while others wanted the
automatic solver to complete the complex part of the path selection
task for them. P8 explained, “If the task is easy, the system can
take more control, and just suggest some solutions. But if there
are more waypoints I might want to first do more exploration of

598

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

Figure 4: An example of how small changes (in this example, the starting position of the physical path) can drastically change the appearance of
the entire physical path.

the starting points and figure out how to get the endpoint of the
path close to the destination. If I can’t do that, then I’d see if
system has some suggestions for me.” This is also reflected in the
task completion times for different modes and difficulties in Figure
3, which show that easy tasks in automatic mode were completed
more significantly more quickly than manual, but difficult tasks
in automatic mode took significantly more time to complete. In
contrast, P1 remarked “If the difficulty is high, just make it automatic.
Otherwise, make it manual.” We can see how this preference is
moderated by participants’ desire to understand the problem. They
need the opportunity to work through more complex problems, in
these cases they are not comfortable with the system jumping in.
In contrast, participants who prefer the system to complete more
difficult tasks for them do not express this desire to understand the
context. Both approaches are valid in different situations, and both
options should be supported.

Participants had divided preferences of whether to start or end
with auto or manual modes, respectively. Participants P10, P4, and
P7 stated preference for starting with manual, while P2, P15, P9,
and P17 preferred ending with manual. P10 explained, “I would def-
initely start with manual, fit it the best I can, and then use automatic
at the end to make it more precise.” In contrast, P2 stated,“You start
off with automatic, and once you get close switch to manual so you
can micro-manipulate the waypoint to finish it off.” The reasons be-
hind similar rationale for different options was not evident, but there
is clearly variation in individual preference for workflow ordering
of the automatic and manual modes.

Many participants desired finer control over the automation, while
others wanted it to be decided for them. Participants who desired
finer granularity of control over the system also suggested the ability
to interchange between automatic and manual mode on a segment-
by-segment basis (P3, P9, P13, P5, P7, P14). P5 mentioned one
possible way was to “default to automatic, but have manual override
over each individual segment.” Alternatively, P14 advised “You
could have an IK solver in between the vertices, and be able to
control which segments use it.” Applying different solver modes
to individual segments is an interesting suggestion, which would
somewhat reduce the efficiency of the solver but affords much more
user control. Other participants made broader suggestions: “I’d
rather have all manual or all algorithm. If I’m going to put my faith
in the algorithm, that’s that.” (P5)

The deviation of participant preferences on many levels indicates
that such automated authoring tools should allow for presets that
accommodate designers’ motivations on multiple dimensions.

5.2.3 General Considerations for Redirected Path Authoring

In addition the above insights comparing the manual and automatic
solvers, we also observed participant feedback on some characteris-
tics inherent to interfaces for selecting RDW paths.

Especially in more complex paths, the high amount of resets
made it difficult for participants to make sense of the path and
adjust it. The basic design used in the study allowed for a more
continuous workflow in which the path would change fluidly as
the user manipulated it. Participants (P10, P8, P9, P5) mentioned
that the constantly changing paths and reset locations this caused
would make it challenging for them to plan out how to edit the path;
this issue was present in both manual and automatic modes. P10
mentioned, “It was hard to know exactly what effect the reset is
going to have on the rest [of the path], so the visualization ends up
being more complicated.” Providing a preview of the direction in
which the path would change in response to a discrete edit by the user
can help users understand these changes; this could take the form
of temporally-incremental snapshots of the predicted path change.
Separately visualizing the number of resets can also help users
understand how their edits are altering the resets without having to
individually count the resets appearing in the edit space.

Participants also (P8, P5) expressed being unsure of how effec-
tively they were optimizing the path, and desired a form of dynamic
score they could actively respond to. Optimality in RDW is sub-
jective to the designer because it involves compromising between
the gain and amount of resets. We can still give useful feedback by
allowing designers to choose what factors they prioritize in a preset,
and calculate a score customized to the designer’s priority.

For both manual and automatic solvers, the way in which the
resets forced the path to curl up inside the physical boundaries
made it appear that all parts of a path would change in response to
participants’ adjustments of single segments or points, even though
this was not the case. (see Figure 4). As a result, participants (P3,
P8, P5, P17, P14) wanted to adjust the path incrementally in single
segments or points without drastically changing the entire structure
of the path. Given that this may cause violations of the gain threshold,
we could address it by allowing users to make independent segment
or point adjustments that violate the gain threshold, whilst making
more noticeable indicators that the threshold has been violated (e.g.
larger size, color, etc.). Another way to allow this kind of adjustment
would be to make the reset direction editable for all resets.

On violating gain thresholds during the path selection process,
participants provided distinct views. Though knowing that the gain
thresholds are based on standard values, P12 and P5 both mentioned
that they would like to be able to alter these thresholds to avoid

599

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

resets. Temporarily allowing violation of gain thresholds is a method
explored in recent work, but there is not much evidence on how they
affect user experience [9]. An interface that aims to give users more
control over path experimentation can consider allowing the gain
thresholds to be changed. P17 raised a point of how they felt less
concerned about violating the gain thresholds because they were not
experiencing the path while designing it: “If I were in a headset,
I’d be more cognizant of how each gain diminished the sense of
presence; but I didn’t experience this while manipulating the lines.”
Future interfaces may want to consider how designers can better
empathize with the end-user while making redirection decisions that
could compromise the experience.

In general, path selection for RDW is a complex multi-step pro-
cess with parameters that may differ based on individual designers’
goals and mindset for the task. Therefore, the system should clearly
communicate and facilitate step-by-step changes to the path, as well
as create options for a diversity of designer contexts (e.g. hands-off
vs. hands-on). We hope that these insights are able to assist with the
design of redirected path authoring in the future.

6 LIMITATIONS AND FUTURE WORK

Although the EA-IK implementation using CCS worked well as
a proof-of-concept initiate exploratory analysis of assisted RDW
experience generation, it is still a somewhat simplistic approach
that only attempted to get the end of the path to the target. As a
result, the algorithm is not able to optimize for the number of resets
as in more traditional RDW algorithms. Determining the best way
to optimize for both alignment error and the number of resets is a
promising direction for future research. This algorithm also did not
consider the user’s orientation at the end of the path. The user’s final
orientation is critical for facilitating passive haptics. While a simple
re-orientation event at the conclusion of the path can be used to align
the user’s orientation, further research on how to control the user’s
orientation with the IK algorithm is necessary.

There are situations in which the system may be unable to find
a physical path that both reaches the target endpoint and maintains
the perceptual thresholds. An elementary example would be if
the distance between the start and goal positions is greater than
the physical path length multiplied by the maximum translation
gain. With the current implementation it is extremely difficult, if
not impossible, to derive a closed form solution to determine if
the combination of a virtual path, a starting physical pose, and
a physical environment will successfully reach a target physical
location without exceeding the user’s perceptual thresholds. The
only way to determine this is to perform the forward kinematics
calculations while taking into account resets. Future research on
classifying the outcome as either successful or unsuccessful based on
the system inputs, without needing to calculate the full physical path,
will make this work more usable in a wider range of applications.

We believe that a more advanced IK integration will produce not
only more optimal results, but will have a smoother user experience.
For example, we noticed in the experiment that participant com-
puters with lower-end hardware tended to lag when solving for the
longer paths, particularly with the CCD step size that was chosen.
Increasing the step size could fix this problem, but utilizing a more
effecient IK algorithm would be more ideal. Adopting the Forward
And Backward Reaching Inverse Kinematics (FABRIK) [2] solver
seems particularly promising, as it determines where the root needs
to be for the end effector to reach the target. This information could
be used to inform better starting locations for the user. This work
also did not make use of curvature gains. Unlike translation and ro-
tation gains, which are directly analogous to prismatic and revolute
joints, there is no direct analog for curvature gain in the traditional
IK literature. Adapting the model to also take advantage of curvature
gains would likely have a positive effect on performance.

Additionally, in our implementation, resets were handled using a

fairly naive approach. By locking the entire solved path before each
reset occurrence, we kept the solver from finding a globally optimal
solution. A more sophisticated way to approach this problem would
be to allow the system to find a solution for the entire path that
dynamically considers resets. One way to potentially do this is to
break each physical path segment into smaller segments that prefer
to be straight, but could bend if necessary. This would allow for
“resets” to happen at locations other than the boundaries, which could
improve the results.

When using either the manual or automatic solver, resets would
often make small changes in the path parameters dramatically change
the resulting physical path (Figure 4). Recent work by Hirt et al. also
noticed the tendency for RDW paths to exhibit a “chaotic” nature,
being heavily influenced by initial path conditions [19]. It might be
possible that as a user traverses RDW paths human variation will
invoke similar chaotic behavior. Azmandian et al. introduced a
method for keeping users on a pre-planned path to solve a different
problem, but it could be used in this situation as well [7,8]. However,
further research on how the apparent chaotic nature of RDW paths
affects the design and authorship of RDW experiences is necessary.

The main purpose of the presented technique is to produce a RDW
path that ends in a specific physical location when provided with
a known virtual path. As there are currently no other algorithms
that accomplish this it is impossible to compare it alongside existing
RDW algorithms, which have the singular goal of reducing the
number of resets. However, as other methods with this goal are
introduced, it will be imperative to do more direct comparisons.

The techniques developed in this paper were only initially eval-
uated in the case of a statically planned RDW scenario, where the
entire virtual path was assumed to be known in advance. Future
evaluations can consider use of the IK method for dynamic predic-
tive RDW algorithms that provide a reliable prediction of the user’s
future path. The method demonstrated in this paper could could
then be adapted to compute gains that would result in environment
alignment. As IK solvers in general are not computationally expen-
sive, it would even be possible to dynamically re-calculate them in
real-time as the prediction changes.

Our user study was also limited in its simplistic interface design
and participant sample size. The high level Unity3D abstractions led
to some superficial usability issues such as lines being too thin to see
well; creating a more polished user interface in the future would im-
prove the authoring experience. The gender ratio of our participants
was uneven, and while there are no expected gender effects for this
study, a more balanced sample gives more representative results.

7 CONCLUSION

RDW allows VR developers more flexibility in the design of natural
locomotion-based experiences. However, it also interferes with the
ability to use passive haptic feedback and other forms of interactions
with the physical environment. The introduction of EA-IK provides
a solution that allows VR experiences to incorporate both physical
interactivity and RDW. The presented user study is among the first
to evaluate how designers actually create RDW experiences, and
provides several useful insights to inform future development of
these authoring tools. In the future, we believe that the ability to
align the virtual and physical coordinate systems using predictive
RDW algorithms will introduce new possibilities for both research
and applications.

ACKNOWLEDGMENTS

This work was supported in part by a US Department of Education
GAANN Fellowship through the Department of Computer Science
and Engineering, University of Minnesota and a Grant to Advance
Graduate Education (GAGE) from the College of Science and En-
gineering, University of Minnesota. The authors would also like to
thank Daniel Keyes for brainstorming some of the critical concepts.

600

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on

explainable artificial intelligence (xai). IEEE Access, 6:52138–52160,

2018. doi: 10.1109/ACCESS.2018.2870052

[2] A. Aristidou and J. Lasenby. Fabrik: A fast, iterative solver for the

inverse kinematics problem. Graphical Models, 73(5):243–260, 2011.

[3] M. Azmandian. Design and Evaluation of Adaptive Redirected Walking
Systems. PhD thesis, University of Southern California, 2018.

[4] M. Azmandian, T. Grechkin, M. Bolas, and E. Suma. The redirected

walking toolkit: A unified development and deployment platform for

exploring large virtual environments. In IEEE VR Workshop on Every-
day Virtual Reality, 2016.

[5] M. Azmandian, T. Grechkin, M. T. Bolas, and E. A. Suma. Physical

space requirements for redirected walking: How size and shape affect

performance. In ICAT-EGVE, pp. 93–100, 2015.

[6] M. Azmandian, M. Hancock, H. Benko, E. Ofek, and A. D. Wilson.

Haptic retargeting: Dynamic repurposing of passive haptics for en-

hanced virtual reality experiences. In ACM CHI Conference on Human
Factors in Computing Systems, pp. 1968–1979. ACM, 2016.

[7] M. Azmandian, R. Yahata, T. Grechkin, and E. S. Rosenberg. Adaptive

redirection: A context-aware redirected walking meta-strategy. IEEE
Transactions on Visualization and Computer Graphics, 28(5):2277–

2287, 2022.

[8] M. Azmandian, R. Yahata, T. Grechkin, J. Thomas, and E. S. Rosen-

berg. Validating simulation-based evaluation of redirected walking

systems. IEEE Transactions on Visualization and Computer Graphics,

28(5):2288–2298, 2022.

[9] E. R. Bachmann, E. Hodgson, C. Hoffbauer, and J. Messinger.

Multi-user redirected walking and resetting using artificial potential

fields. IEEE Transactions on Visualization and Computer Graphics,

25(5):2022–2031, 2019.

[10] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical evaluation of the

system usability scale. Intl. Journal of Human–Computer Interaction,

24(6):574–594, 2008.

[11] Y. Chang, K. Matsumoto, T. Narumi, T. Tanikawa, and M. Hirose.

Redirection controller using reinforcement learning. IEEE Access,

9:145083–145097, 2021. doi: 10.1109/ACCESS.2021.3118056

[12] Z.-Y. Chen, Y.-J. Li, M. Wang, F. Steinicke, and Q. Zhao. A rein-

forcement learning approach to redirected walking with passive haptic

feedback. In 2021 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR), pp. 184–192. IEEE, 2021.

[13] L.-P. Cheng, T. Roumen, H. Rantzsch, S. Köhler, P. Schmidt, R. Kovacs,

J. Jasper, J. Kemper, and P. Baudisch. Turkdeck: Physical virtual reality

based on people. In ACM Symposium on User Interface Software and
Technology, pp. 417–426. ACM, 2015.

[14] T. Dong, X. Chen, Y. Song, W. Ying, and J. Fan. Dynamic artificial

potential fields for multi-user redirected walking. In 2020 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR), pp. 146–154.

IEEE, 2020.

[15] U. Ehsan, Q. V. Liao, M. Muller, M. O. Riedl, and J. D. Weisz. Ex-
panding Explainability: Towards Social Transparency in AI Systems.

Association for Computing Machinery, New York, NY, USA, 2021.

[16] T. Grechkin, M. Azmandian, M. Bolas, and E. Suma. Towards context-

sensitive reorientation for real walking in virtual reality. In IEEE
Conference on Virtual Reality, pp. 185–186. IEEE, 2015.

[17] T. Grechkin, J. Thomas, M. Azmandian, M. Bolas, and E. Suma. Revis-

iting detection thresholds for redirected walking: combining translation

and curvature gains. In ACM Symposium on Applied Perception, pp.

113–120. ACM, 2016.

[18] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Pro-
ceedings of the human factors and ergonomics society annual meeting,

vol. 50, pp. 904–908. Sage publications Sage CA: Los Angeles, CA,

2006.

[19] C. Hirt, Y. Kompis, C. Holz, and A. Kunz. The chaotic behavior

of redirection–revisiting simulations in redirected walking. In 2022
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp.

524–533. IEEE, 2022.

[20] E. Hodgson and E. Bachmann. Comparing four approaches to gen-

eralized redirected walking: Simulation and live user data. IEEE

Transactions on Visualization and Computer Graphics, 19(4):634–643,

2013.

[21] H. G. Hoffman. Physically touching virtual objects using tactile aug-

mentation enhances the realism of virtual environments. In IEEE
Virtual Reality, pp. 59–63. IEEE, 1998.

[22] C. Hutton, S. Ziccardi, J. Medina, and E. Suma Rosenberg. Individual-

ized calibration of rotation gain thresholds for redirected walking. In

ICAT-EGVE, 2018.

[23] B. E. Insko, M. Meehan, M. Whitton, and F. Brooks. Passive haptics
significantly enhances virtual environments. PhD thesis, University of

North Carolina at Chapel Hill, 2001.

[24] L. Kohli, E. Burns, D. Miller, and H. Fuchs. Combining passive haptics

with redirected walking. In Proceedings of the 2005 international
conference on Augmented tele-existence, pp. 253–254. ACM, 2005.

[25] D.-Y. Lee, Y.-H. Cho, and I.-K. Lee. Real-time optimal planning for

redirected walking using deep q-learning. In 2019 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), pp. 63–71. IEEE, 2019.

[26] Y.-J. Li, M. Wang, F. Steinicke, and Q. Zhao. Openrdw: A redirected

walking library and benchmark with multi-user, learning-based func-

tionalities and state-of-the-art algorithms. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 21–30.

IEEE, 2021.

[27] R. W. Lindeman, J. L. Sibert, and H. J. K. Hand-held windows: towards

effective 2d interaction in immersive virtual environments. In IEEE
Conference on Virtual Reality, pp. 205–212, 1999.

[28] J. Messinger, E. Hodgson, and E. R. Bachmann. Effects of tracking

area shape and size on artificial potential field redirected walking. In

IEEE Conference on Virtual Reality and 3D User Interfaces, 2019.

[29] T. Nescher, Y.-Y. Huang, and A. Kunz. Planning redirection techniques

for optimal free walking experience using model predictive control. In

IEEE Symposium on 3D User Interfaces, pp. 111–118. IEEE, 2014.

[30] C. T. Neth, J. L. Souman, D. Engel, U. Kloos, H. H. Bulthoff, and B. J.

Mohler. Velocity-dependent dynamic curvature gain for redirected

walking. IEEE Transactions on Visualization and Computer Graphics,

18(7):1041–1052, 2012.

[31] A. Nguyen, Y. Rothacher, E. Efthymiou, B. Lenggenhager, P. Brugger,

L. Imbach, and A. Kunz. Effect of cognitive load on curvature redi-

rected walking thresholds. In 26th ACM Symposium on Virtual Reality
Software and Technology, pp. 1–5, 2020.

[32] A. Nguyen, Y. Rothacher, B. Lenggenhager, P. Brugger, and A. Kunz.

Individual differences and impact of gender on curvature redirection

thresholds. In Proceedings of the 15th acm symposium on applied
perception, pp. 1–4, 2018.

[33] N. C. Nilsson, T. Peck, G. Bruder, E. Hodgson, S. Serafin, M. Whitton,

F. Steinicke, and E. S. Rosenberg. 15 years of research on redirected

walking in immersive virtual environments. IEEE Computer Graphics
and Applications, 38(2):44–56, 2018.

[34] T. C. Peck, H. Fuchs, and M. C. Whitton. Evaluation of reorienta-

tion techniques and distrators for walking in large virtual environ-

ments. IEEE Transactions on Visualization and Computer Graphics,

15(3):383, 2009.

[35] S. Razzaque. Redirected walking. University of North Carolina at

Chapel Hill, 2005.

[36] S. Razzaque, Z. Kohn, and M. C. Whitton. Redirected walking. In

EUROGRAPHICS, vol. 9, pp. 105–106. Citeseer, 2001.

[37] R. A. Ruddle. The effect of translational and rotational body-based

information on navigation. In Human walking in virtual environments,

pp. 99–112. Springer, 2013.

[38] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estima-

tion of detection thresholds for redirected walking techniques. IEEE
Transactions on Visualization and Computer Graphics, 16(1):17–27,

2010.

[39] F. Steinicke, G. Bruder, T. Ropinski, and K. Hinrichs. Moving towards

generally applicable redirected walking. In Proceedings of the Virtual
Reality International Conference (VRIC), pp. 15–24. IEEE Press, 2008.

[40] R. R. Strauss, R. Ramanujan, A. Becker, and T. C. Peck. A steering

algorithm for redirected walking using reinforcement learning. IEEE
transactions on visualization and computer graphics, 26(5):1955–1963,

2020.

[41] J. Thomas, C. Hutton Pospick, and E. Suma Rosenberg. Towards

601

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

physically interactive virtual environments: Reactive alignment with

redirected walking. In 26th ACM Symposium on Virtual Reality Soft-
ware and Technology, pp. 1–10, 2020.

[42] J. Thomas and E. S. Rosenberg. A general reactive algorithm for redi-

rected walking using artificial potential functions. In IEEE Conference
on Virtual Reality and 3D User Interfaces, 2019.

[43] M. Usoh, K. Arthur, M. C. Whitton, R. Bastos, A. Steed, M. Slater,

and F. P. Brooks Jr. Walking¿ walking-in-place¿ flying, in virtual

environments. In ACM SIGGRAPH, pp. 359–364. ACM Press/Addison-

Wesley Publishing Co., 1999.

[44] B. Williams, G. Narasimham, B. Rump, T. P. McNamara, T. H. Carr,

J. Rieser, and B. Bodenheimer. Exploring large virtual environments

with an hmd when physical space is limited. In ACM Symposium on
Applied Perception, pp. 41–48, 2007.

[45] N. L. Williams, A. Bera, and D. Manocha. Arc: Alignment-based

redirection controller for redirected walking in complex environ-

ments. IEEE Transactions on Visualization and Computer Graphics,

27(5):2535–2544, 2021.

[46] N. L. Williams, A. Bera, and D. Manocha. Redirected walking in static

and dynamic scenes using visibility polygons. IEEE Transactions on
Visualization and Computer Graphics, 27(11):4267–4277, 2021.

[47] N. L. Williams and T. C. Peck. Estimation of rotation gain thresh-

olds considering fov, gender, and distractors. IEEE transactions on
visualization and computer graphics, 25(11):3158–3168, 2019.

[48] G. Wilson, M. McGill, M. Jamieson, J. R. Williamson, and S. A. Brew-

ster. Object manipulation in virtual reality under increasing levels of

translational gain. In ACM Conference on Human Factors in Comput-
ing Systems, p. 99. ACM, 2018.

[49] S. J. Wright. Coordinate descent algorithms. Mathematical Program-
ming, 151(1):3–34, 2015.

[50] S.-Z. Xu, T. Lv, G. He, C.-H. Chen, F.-L. Zhang, and S.-H. Zhang. Op-

timal pose guided redirected walking with pose score precomputation.

In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pp. 655–663. IEEE, 2022.

[51] A. Zenner and A. Krüqer. Estimating detection thresholds for desktop-

scale hand redirection in virtual reality. In IEEE Virtual Reality, pp.

47–55. IEEE, 2019.

[52] M. A. Zmuda, J. L. Wonser, E. R. Bachmann, and E. Hodgson. Opti-

mizing constrained-environment redirected walking instructions using

search techniques. IEEE Transactions on Visualization and Computer
Graphics, 19(11):1872–1884, 2013.

602

Authorized licensed use limited to: University of Minnesota. Downloaded on January 13,2023 at 21:20:52 UTC from IEEE Xplore. Restrictions apply.

